فهرست جدول­ها…………………………………………………………………. ص

فهرست شکل­ها…………………………………………………………………… ط

فصل اول (مقدمه و اهداف)………………………………………………………. 1

1-1- مقدمه………………………………………………………………………. 2

1-2- اهداف……………………………………………………………………… 7

فصل دوم (کلیات و مرور منابع)……………………………………………….. 8

2-1- اهمیت منابع ژنتیکی…………………………………………………….. 9

2-2- طبقه بندی منابع ژنتیکی گیاهی……………………………………….. 9

2-2-1- گونه‌های وحشی………………………………………………………… 9

 2-2-2-گونه های زراعی……………………………………………………….. 10

2-3- مناطق پراکنش جنس آژیلوپس…………………………………………. 10

2-4- مناطق پراکنش گونه Ae.crassa…………………………………………

2-5- طبقه بندی گونه Ae.crassa……………………………………………..

2-6- تنوع ژنتیکی و اهمیت شناخت آن…………………………………….. 12

2-7- منشاء تنوع ژنتیکی ..13

2-8- اهمیت بررسی تنوع ژنتیکی………………………………………….. 13

2-9- کاربردهای بررسی تنوع ژنتیکی………………………………………. 14

2-9-1- بررسی­های فیلوژنتیکی……………………………………………….. 14

2-9-2- ژنتیک جمعیت………………………………………………………….. 14

2-9-3-مدیریت گیاهان وحشی………………………………………………… 14

2-9-4- مدیریت منابع ژنتیکی………………………………………………….. 15

2-9-4-1- کلکسیون های ذخائر ژنتیک گیاهی………………………………. 15

2-9-4-1- کنترل بیماری­های گیاهی…………………………………………….. 15

2-10- روش های ارزیابی تنوع ژنتیکی……………………………………….. 16

2-11- نشانگرهای ژنتیکی……………………………………………………… 16

2-11-1- نشانگرهای مورفولوژیک………………………………………………. 16

2-11-2- مزایا و معایب نشانگرهای مورفولوژیک……………………………… 17

2-11-3- نشانگرهای مولکولی………………………………………………….. 18

2-11-3-1- خصوصیات مناسب یک نشانگر مولکولی…………………………. 19

2-11-3- 2-اهمیت نشانگرهای مولکولی DNA………………………………..

2-11-3-3- نشانگرهای بیوشیمیایی………………………………………….. 20

2-11-3-4- نشانگرهای مبتنی بر DNA…………………………………………

2-11-3-5- نشانگرهای DNA  غیر مبتنی بر PCR……………………………

2-11-3-6- نشانگرهای DNA  مبتنی بر PCR………………………………….

2-11-3-7-  نشانگرهای DNA  مبتنی بر PCR  هدفمند و توالی یابی……..22

2-12- نشانگرهای مولکولی ISSR……………………………………………

2-12-1- علل ایجاد چندشکلی حاصل از نشانگر مولکولی ISSR…………..

2-12-1-1- نمونه DNA………………………………………………………….

2-12-1-2- ماهیت آغازگر………………………………………………………… 25

2-12-1-3- روش مورد استفاده برای تشخیص باندها………………………… 26

2-12-2- مزایای نشانگرهای ISSR………………………………………………

2-12-2-1- تکرارپذیری بسیار بالا……………………………………………….. 26

2-12-2-2- دقت بالا………………………………………………………………. 27

2-12-2-3- تنوع بالا……………………………………………………………….. 27

2-12-2-4-  هزینه پایین………………………………………………………….. 27

2-12-2-5- سرعت و سهولت اجرا………………………………………………. 27

2-12-3- معایب نشانگرهای ISSR……………………………………………….

2-12- 4- انواع نشانگرهای ISSR………………………………………………..

2-12-4-1-تکنیک MP-PCR ……………………………………………………

2-12-4-2- تکنیک F-ISSR……………………………………………………..

2-12-5-کاربرد نشانگرهای مولکولی ISSR…………………………………..

2-12-5-1- انگشت­نگاری ژنومی………………………………………………… 29

2-12-5-2-   مطالعات تنوع ژنتیکی و تجزیه و تحلیل فیلوژنتیکی……………29

2-12-5-3-  نقشه­یابی ژنتیکی………………………………………………… 30

2-12-5-4-  نشانمند کردن ژن و انتخاب به کمک نشانگر…………………….. 30

2-12-5-5- مشخص کردن فراوانی توالی­های ریزماهواره­ای………………….. 30

2-12-5-6- کاربرد نشانگرهای  ISSR در شناسایی و رده­بندی گونه ها……31

2-13- تجزیه و تحلیل تنوع ژنتیکی……………………………………………… 31

2-14- تخمین فاصله ژنتیکی……………………………………………………. 32

2-14- 1- روش گروهبندی افراد یا جمعیت ها………………………………….. 32

2-14-1-1-تجزیه خوشه ای……………………………………………………… 33

2-14-1-2- تجزیه به مختصات اصلی (PCoA)………………………………….. 34

2-14-2-  معیارهای سودمندی نشانگرها………………………………………. 34

2-14-2-1- محتوی اطلاعات چندشکلی……………………………………….. 34

2-14-2-2-  احتمال همسانی…………………………………………………… 35

2-14-2-3-  قدرت تفکیک………………………………………………………….. 35

2-15- مروری بر مطالعات ژنتیکی  و مورفولوژی انجام شده روی گونه های آژیلوپس….35

 

مقالات و پایان نامه ارشد

 

فصل سوم (مواد و روشها)……………………………………………………….. 40

3 -1- مواد گیاهی………………………………………………………………… 41

3-2- آغازگرها………………………………………………………………………. 43

3-3-  مکان و زمان انجام آزمایش مولکولی…………………………………….. 43

3-4- عملیات زراعی……………………………………………………………….. 44

3 -4-1- مشخصات جغرافیایی محل انجام آزمایش مزرعه‌ای…………………. 44

3 -4- 2- طرح آزمایشی و مراحل اجرای آن………………………………………. 44

3 -5- استخراج DNA ژنومی………………………………………………………. 45

3-6- تعیین کمیت نمونه های DNA  ژنومی…………………………………….. 47

3 -7- تعیین کیفیت نمونه های DNA ژنومی……………………………………. 48

3 -8- روش تهیه آگاروز 8/0و 5/1 درصد برای تعیین کمیت وکیفیت و تفکیک قطعات تکثیر شده…..48

3-9- آماده سازی نمونه ها واجرای الکتروفورز ژل آگاروز………………………… 49

3-10- اجزای واکنش زنجیره ای پلیمراز…………………………………………… 50

3-11- سیکل حرارتی و مراحل واکنش زنجیره­ای پلیمراز……………………….. 50

3 -12-توان و زمان مورد نیاز برای الکتروفورز محصول PCR………………………..

3 -13- مواد تشکیل دهنده بافرTE………………………………………………….

3-14- تهیه بافر  TAE10X…………………………………………………………..

3 -15- اتیدیوم بروماید…………………………………………………………….. 53

3 -16- رنگ بارگذاری……………………………………………………………… 53

3 -17- مراحل رنگ آمیزی تا ظاهرسازی قطعات تکثیر شده…………………….53

3-18- تجزیه وتحلیل داده ها………………………………………………………… 54

3-18-1- امتیازبندی باندهای حاصل از داده های مولکولی……………………….54

3-18-2- تجزیه خوشه ای و آنالیز مولکولی…………………………………………54

فصل چهارم(بحث و نتیجه ­گیری)…………………………………………………….55

 4-1- نتایج استخراج DNA ژنومی…………………………………………………. 56

4 -2- نتایج واکنش زنجیره­ای پلیمراز……………………………………………… 56

4 -3- محاسبه چندشکلی نشانگرهای ISSR…………………………………….

4-4- محاسبه محتوای اطلاعات چندشکلی نشانگرهای ISSR…………………

4-5- محاسبه شاخص نشانگر(MI) نشانگرهای ISSR…………………………

4 -5- محاسبه ضرایب همبستگی کوفنتیک…………………………………….. 61

4-6- ترسیم دندروگرام جمعیت­های Ae.crassa…………………………………….

4-7- تجزیه به مختصات اصلی با بهره گرفتن از نرم­افزار DARWin  وترسیم نمودار سه بعدی جمعیت­ها با نرم ­افزار Minitab

4-8- محاسبه فاصله ژنتیکی درون و بین جمعیت­های Ae.crassa……………..

4-9- محاسبه ماتریس فاصله و تشابه ژنتیکی شاخص Nei ………………….

4 -10- میزان آلل­های چندشکل در جمعیت­های Ae.crassa…………………….

4-11- محاسبه شاخص ­های ژنتیکی در جمعیت­های Ae.crassa…………………

4 -12- تجزیه واریانس مولکولی………………………………………………….. 71

4-13- بررسی صفات مورفولوژی…………………………………………………. 72

4-13-1- همبستگی ساده فنوتیپی……………………………………………… 72

4-13-2- تجزیه کلاستر (خوشه­ای)…………………………………………………74

4-13-3- تجزیه به مولفه های اصلی……………………………………………… 76

4 -13-4- تجزیه علیت (مسیر)…………………………………………………….. 78

4-14- نتیجه ­گیری کلی مولکولی…………………………………………………. 80

4-15- نتیجه ­گیری کلی مورفولوژیکی……………………………………………….81

4-15-1 پیشنهادات…………………………………………………………………… 83

 منابع .. …………………… 84

چکیده:

     گیاه Aegilops crassa ،دارای دو سیتوتیپ تتراپلوئید وهگزاپلوئید با ژنوم ( 2n=2x=28 McrMcrDcr1Dcr1 ) و (2n=6x=42 McrMcrDcr1Dcr1 Dcr2Dcr2  ) است. این گیاه  یکساله و متعلق به خانواده گرامینه و طایفه Triticeae می باشد. بررسی تنوع ژنتیکی در ژرم­پلاسم گیاهی پیش­نیاز هر برنامه­ی اصلاحی یا حفاظتی گیاهان است. این تحقیق به منظور بررسی تنوع ژنتیکی بین 16 جمعیت Ae.crassa با بهره گرفتن از 10 آغازگر ISSR انجام شد. DNA ژنومی از گونه­ ها در مرحله­ دو تا سه برگی به روش CTAB با اندکی تغییرات استخراج و نتایج تکثیر با آغازگرهای مختلف روی ژل آگاروز 5/1 درصد مشاهده شدند. باندهای تکثیر شده به صورت حضور باند (یک) و عدم حضور باند (صفر) امتیازدهی و با نرم­افزارهای مولکولی و آماری، تجزیه و تحلیل داده ­ها  انجام گرفت. همچنین این آزمایش در قالب طرح آزمایشی اگمنت (در 3 بلوک) در مزرعه تحقیقاتی دانشکده کشاورزی دانشگاه ایلام انجام شد. از میان نمونه‌های ارزیابی شده سه نمونه که دارای بذر بیشتری بودند به عنوان شاهد استفاده شدند. نتایج تکثیر DNA ژنومی با بهره گرفتن از آغازگرهای ISSR، در مجموع 105 آلل تولید کرد که از این تعداد 86 آلل (9/81 درصد)، به عنوان آلل چندشکل تشخیص داده شد. اندازه آلل­های تکثیر شده از 190 (آغازگر UBC840) تا 1500 جفت باز (آغازگر 12،14) بود. محتوای اطلاعات چندشکلی از 17/0 در آغازگر UBC842 تا 34/0 برای آغازگر 12 متفاوت بود. همچنین با بهره گرفتن از نشانگر ISSR به ترتیب بیشترین و کم­ترین درصد باندهای چندشکل در جمعیت IUGB-00319 (05/39 درصد) و IUGB-01564 (48/10درصد) مشاهده گردید. جمعیت IUGB-00319 بالاترین شاخص تصحیح شده هتروژنی و میزان شاخص شانون را به خود اختصاص داد. آنالیز واریانس مولکولی نشان داد که سطح بیشتری از تنوع به درون جمعیت­ها (53 درصد) تعلق داشت، درحالی که (47 درصد) تنوع در بین جمعیت­ها مشاهده گردید. همچنین تجزیه خوشه ای داده‌ها با بهره گرفتن از ماتریس شاخص Nei با الگوریتم Nj انجام شد. دندروگرام بدست آمده جمعیت­ها را به سه گروه و زیر گروه­هایی تقسیم نمود و تا حدی عدم ارتباط بین تنوع مولکولی و تنوع جغرافیایی را نشان داد. نتایج این تحقیق نشان می­دهد که نشانگرهای ISSR برای ارزیابی میزان تنوع ژنتیکی در آژیلوپس کراسا مفید است.

فصل اول: مقدمه و اهداف

1-1- مقدمه

ایران یکی از غنی ترین مراکز دنیا از نظر ذخایر ژنتیکی گیاهی محسوب می‌شود. به عقیده گیاهشناسان ایرانی حدود 10 الی 12 هزار گونه گیاهی در ایران وجود دارد که آن را به عنوان یکی از غنی ترین مراکز تنوع ذخایر توارثی گیاهی در جهان ساخته است.گونه های وحشی به لحاظ داشتن ژن های مفید برای مقاومت به تنش های زنده و غیرزنده و گسترش سازگاری ژنتیکی در برابر تغییرات محیطی دارای اهمیت می‌باشند. برای استفاده از این منابع، اطلاع از ماهیت و  میزان تنوع موجود در ژرم‌پلاسم، از اهمیت ویژه‌ای برخوردار است [108] . بررسی تنوع ژنتیکی در گیاهان زراعی برای برنامه های اصلاحی و حفاظت از ذخایر توارثی، حیاتی بوده و اطلاع از سطح تنوع ژنتیکی در گونه گیاهی برای انتخاب والدین جهت رسیدن به هیبرید مناسب از اهمیت زیادی برخوردار است [109]. بررسی تنوع ژنتیکی همچنین از جنبه مدیریت موثر و حفظ منابع ژرم پلاسم دارای اهمیت می‌باشد [96]. روش‌هایی که برای تخمین تنوع ژنتیکی مورد استفاده قرار گرفته‌اند متفاوت می‌باشند. از جمله‌ی آن‌ ها می توان ثبت شجره، خصوصیات مورفولوژیکی و نشانگرهای مولکولی را نام برد [41]. آگاهی از تنوع ژنتیکی ژرم‌پلاسم ها معیاری مناسب برای استفاده از آن‌ ها در شناسایی و انتقال ژن‌ها در بهبود گیاهان زراعی می‌باشند [41]. تنوع ژنتیکی اساس بیشتر برنامه‌های اصلاحی بوده و انجام گزینش منوط به وجود تنوع ژنتیكی مطلوب از نظر ویژگیهای مورد بررسی می‌باشد [32]. مطالعه تنوع ژنتیكی فرایندی است كه تفاوت یا شباهت گونه‌ها، جمعیت‌ها و یا افراد را با بهره گرفتن از روش‌ها و مدل‌های آماری خاص بر اساس صفات مورفولوژیك، اطلاعات شجره‌ای یا خصوصیات مولكولی افراد بیان می‌کنند [32]. تعیین سطح تنوع ژنتیکی یکی از مراحل اساسی در مدیریت مؤثر و استفاده از ذخایر ژنتیکی می‌‌‌‌‌‌‌‌‌‌باشد [96،23،7]. منابع ژنتیكی یا ذخایر توارثی به دلیل اهمیت فراوانی كه دارند یكی از ارزشمند ترین ثروت های ملی و منابع پایه ای در هر كشور محسوب می‌شوند [1]. یکی از عواقب اصلاح‌نباتات موفق، افزایش فرسایش یا کاهش منابع ژنتیکی گیاهی بوده که تحت برنامه انتخاب قرار گرفته‌اند. در سال های اخیر عوامل بسیار زیادی در فرسایش ژنتیکی و نابودی ذخایر ژرم‌پلاسم نقش داشته‌اند [16]. استفاده از واریته‌های اصلاح شده بجای واریته‌های بومی، اعمال روش‌های مدرن زراعی مانند استفاده از سموم علف‌کش، پیشرفت شهرها و مراکز صنعتی، مسکونی شدن زمین های زراعی و مرتعی، تغییر روش های کشت و سایر عواملی که منجر به فرسایش و انقراض مواد با ارزش می‌شوند که به‌طور مستقیم وغیر مستقیم در کشاورزی و اصلاح نباتات قابل استفاده هستند. بنابراین حفاظت و استفاده از منابع ژنتیکی گیاهی برای بقا و بهبود تولیدات زراعی ضروری بوده و به عنوان نیازی اساسی در توسعه پایدار و کاهش فقر محسوب می‌شود. تنوع ژنتیکی اساس اکثر برنامه های اصلاح نباتات می‌‌‌‌‌‌‌‌‌‌باشد [111،74،7]. موفقیت در اصلاح یک گیاه زراعی، در درجه اول به دسترسی تنوع ژنتیکی موجود در آن گیاه بستگی دارد، ضمن اینکه تنوع ژنتیکی یکی از ارکان اصلی کشاورزی پایدار است و وجود تنوع ژنتیکی در نظام‌های زراعی با درس گرفتن از طبیعت باید همواره مد نظر قرار گیرد. مدیریت و استفاده صحیح از تنوع موجود در ارقام محلی و خویشاوندان وحشی یک گونه گیاهی در اجرای برنامه‌های موثر اصلاحی بسیار مهم است. اولین قدم در اصلاح یک گیاه، شناسائی دقیق ساختار ژرم‌پلاسم آن گیاه است که این مطلب خود نمونه‌گیری منظم و دقیق از ژرم‌پلاسم را برای اهداف اصلاحی و حفاظتی امکان پذیر خواهد ساخت. کاهش تنوع علاوه بر کاهش بازده برنامه های اصلاحی، باعث یکنواختی ژنتیکی در مزارع و آسیب‌پذیری شدید محصولات کشاورزی در برابر آفات، بیماری‌ها و تنش‌های محیطی می‌گردد. خویشاوندان وحشی گیاهان، دربردارنده منابع ژنی با ارزش برای مقاومت به تنش‌های زنده و غیرزنده می باشند.

توده‌های وحشی و نژادهای بومی از مهم‌ترین منابع تنوع ژنتیکی در دسترس می‌باشند [26]. اهلی‌سازی جمعیت‌های برتر انتخاب شده از بین تعداد زیادی توده می‌تواند پیشرفت قابل توجهی در تأمین نیاز صنایع وابسته بدون نیاز به روش‌های پرهزینه و گران اصلاحی ایجاد نماید [26]. اهلی‌کردن، فرایندی طولانی است، اما با انتخاب مناسب در شروع به شدت بر سرعت آن افزوده می‌شود [26]. بنابراین، با بررسی تنوع موجود، آگاهی از ساختار ژنتیکی جمعیت و بررسی تنوع فنوتیپی و ویژگی‌های شیمیایی می‌توان در بین توده‌های طبیعی به انتخاب، به‌عنوان اولین روش اصلاحی در طی اهلی‌کردن پرداخت [26]. تنوع ژنتیکی، کلیدی برای به‌نژادی گیاهان است. دانش روابط ژنتیکی بین توده‌های مختلف به مدیریت ژرم‌پلاسم کارآمد و استراتژی‌های بهره‌برداری کمک بزرگی می کند. تنوع ژنتیکی گیاهان طی هزاران سال ایجاد شده و در طبیعت به صورت پایدار باقی مانده است [26].

ارقام بومی گیاهان زراعی و خویشاوندان وحشی آن‌ ها، به دلیل قدمت و سازگاری‌شان به شرایط زیستی و عوامل نامسائد محیطی دارای مناسب‌ترین ژن‌ها بوده وتنوع ژنتیکی مورد نیاز اصلاح گیاه را تأمین می کند [13]. تعیین میزان تنوع ژنتیکی در مواد گیاهی گام اولیه برای شناسایی، حفظ ونگهداری ذخایرتوارثی ونیز پایه اساسی و اولیه برای تحقیقات ژنتیکی و برنامه‌های اصلاحی می‌‌‌‌‌‌‌‌‌‌باشد [27].

گیاه  Aegilops crassa،دارای دو سیتوتیپ تتراپلوئید وهگزاپلوئید با ژنوم ( 2n=2x=28 McrMcrDcr1Dcr1) و (2n=6x=42 McrMcrDcr1Dcr1 Dcr2Dcr2  ) است [44]. تجزیه جفت شدن کروموزوم‌های میوزی در هیبریدهای بین سیتوتیپ‌های تتراپلوئید وهگزاپلوئید Ae. crassa بیانگر آن است که فرم هگزاپلوئید از هیبریداسیبون بین فرم تتراپلوئید Ae. crassa و Ae. tauschii حاصل گردیده است. اما در حال حاضر منشأ سیتوتیپ تتراپلوئید Ae. crassa را نمی‌توان با دقت تعیین کرد [69]. گیاهی یکساله و متعلق به خانواده گرامینه یا پواسه و طایفه تریتیسه می‌‌‌‌‌‌‌‌‌‌باشد، این گونه به عنوان یک علف هرز شایع در مزارع گندم نان دیده می‌شود [57،56]. آژیلوپس کراسا در ترکیه، فلسطین، سوریه، اردن، ایران، عراق، لبنان، افغانستان، ترکمنستان و پامیر و کوه‌های آلتای پراکنده است، در ایران دارای دامنه پراکنش بسیار وسیعی بوده و از دامنه‌های البرز در شرق کشورتا شمال غرب در آذربایجان غربی وبر روی دامنه‌های رشته‌کوه زاگرس تا سواحل جنوبی در ارتفاعات استان بوشهر وهرمزگان می‌روید [101،40]. این گونه به عنوان یک منبع صفات مفید از قبیل تحمل به شوری، مقاومت به آفت و تحمل به سرما شناخته شده است [87،4]. مطالعه‌ی گونه‌های آژیلوپس در نقاط مختلف دنیا نشان می‌دهد که این گونه‌ها منابع ژنتیکی بی‌نظیری برای اصلاح گندم می‌باشند [33،17].

توده‌های بومی یک گیاه، ژرم‌پلاسم مناسبی برای برنامه‌های اصلاحی محسوب می‌شوند. بررسی تنوع ژنتیکی در گیاهان از طریق بررسی صفات مورفولوژیکی و بیوشیمیایی همواره متداول بوده است. باتوجه به اینکه اندازه‌گیری صفات مورفولوژیکی نیاز به صرف وقت، انرژی و هزینه زیادی دارد و به دلیل تاثیر عوامل محیطی بر بیان ژن و بروز صفات، بررسی تنوع ژنتیکی از طریق بررسی ویژگی‌های مورفولوژیکی روش قابل اعتمادی برای تعیین تفاوت‌های ژنتیکی نیست [8]. برای بررسی تنوع ژنتیکی می‌توان از نشانگرهای مورفولوژیکی، پروتئینی و نشانگرهای مولکولی استفاده نمود [113،102]. بررسی تنوع ژنتیکی در گیاهان، از طریق صفات مورفولوژیکی متداول بوده است [3]. با این وجود نشانگرهای مورفولوژیکی دارای معایب زیادی می‌باشند. از جمله این که تحت تأثیر شرایط محیطی و مرحله‌ی رشد موجود قرار می‌گیرند و پایداری کمی دارند [29]. بنابراین استفاده از نشانگرهای مولکولی یکی از ابزارهای بسیار مهم و قوی در زمینه بررسی تنوع ژنتیکی و انگشت نگاریDNA می‌باشدکه در ارزیابی روابط خویشاوندی ژنتیکی، انتخاب گیاهان برتر و بررسی شباهت یا تفاوت بین نمونه‌های مختلف کاربرد دارند [27]. همچنین استفاده از این نشانگرها در مدیریت ژرم‌پلاسم و انتخاب براساس نشانگر (MAS)، برای افزایش کارایی اصلاح و تکثیر ژرم‌پلاسم مفید می‌باشد [27]. انتخاب نوع نشانگرهای مولکولی به تکرارپذیری و سادگی روش کار آن بستگی دارد. بهترین نشانگری است که دارای هزینه اجرای پایین و قابلیت اعتماد بالایی باشد. نشانگرهای مولکولی به دو دسته نشانگرهای بیوشیمیایی و نشانگرهای مبتنی بر DNA تقسیم می‌شوند. [3]. نشانگرهای مبتنی بر DNA نسبت به نشانگرهای مورفولوژیکی و پروتئینی، کاربردی تر و دارای مزایای بیشتری می‌باشند. بررسی DNA گیاهی امکان ارزیابی مستقیم تنوع ژنتیکی را ممکن می‌سازد [3]. تاکنون تعداد زیادی از نشانگر‌های مبتنی بر DNA معرفی شده‌اند و در تجزیه‌های ژنتیک موجودات مورد استفاده قرار گرفته‌اند نشانگرهای مبتنی بر DNA نسبت به نشانگرهای مورفولوژیکی و پروتئینی، کاربردی تر و دارای مزایای بیشتری می‌باشند [28]. این نشانگر ها از نظر بسیاری از ویژگی‌ها از قبیل درجه چندشکلی، غالب یا هم بارز بودن، تعداد جایگاه‌های تجزیه‌شده در هر آزمایش، توزیع در سطح کروموزوم، تکرارپذیری، نیاز یا عدم نیاز به توالی‌یابی DNA الگو و هزینه مورد نیاز با همدیگر متفاوت‌اند [28]. نشانگرهایی که چند شکلی را در سطح DNA آشکار می‌نمایند، به عنوان یک ابزار قدرتمند برای توصیف و تنوع ژنتیکی شناخته شده‌اند [45]. نشانگرها با توجه به استراتژی پایه گروه‌بندی شده‌اند که مهمترین آن‌ ها عبارتند از: روش‌های غیر مبتنی بر PCR (RFLP و …) و تکنیک‌های مبتنی بر PCR (RAPD، AFLP و ISSR و …).

نشانگرهای مبتنی بر DNA، برای اصلاح گیاهان زراعی روند رو به رشدی داشته اند [84]. نشانگرهای مبتنی بر PCR از جمله RAPD ، AFLPو ریزماهواره ها ابزاری قدرتمند برای مطالعه تنوع ژنتیکی گندم‌های زراعی و وحشی محسوب می‌شوند [110]. ریزماهواره‌ها نشانگرهای مبتنی بر PCR هستند که به خاطر سطوح بالای چندشکلی، چنداللی‌بودن،وراثت هم‌بارز، پوشش وسیع ژنوم و سهولت در آشکارسازی می توان از آن‌ ها برای بررسی تنوع بین گونه های وحشی و زراعی استفاده کرد [95]. سیستم نشانگری SSR نیاز به اطلاعات اولیه از توالی مورد هدف دو طرف نواحی تکراری، جهت طراحی آغازگر دارد، لذا سیستم نشانگری  ISSRمی‌تواند بر این محدودیت‌ها غلبه کند و میزان چندشکلی بیشتر و آشکارسازی راحت‌تری نسبت به نشانگرهای مولکولی دیگر داشته باشد [19]. نشانگر ISSR نشانگری تصادفی است که در سال 1994 جهت تحلیل ژنومی استفاده شده است. در این نشانگر نواحی ریز‌ماهواره‌ای یکسان که در دو جهت مخالف و در فاصله‌ای قابل تکثیر با آنزیم پلی مراز قرار گرفته باشند، تکثیر می‌گردند. دراین روش واکنش زنجیره‌ای پلی‌مراز باعث تکثیر نواحی بین ریزماهواره‌ها در اندازه‌های متفاوت می‌شود [119،96]. نشانگر ISSR دارای توانایی زیادی در بررسی روابط خویشاوندی و تکاملی گیاهان و دارای چندشکلی قابل قبولی می‌باشد. این نشانگر تصادفی بوده و تکرارپذیری و چندشکلی بالایی دارد و در دامنه وسیعی از گیاهان کاربرد دارد. آغازگرهای مورد استفاده در این نشانگر مکمل توالی‌های ریزماهواره‌ای هستند.

نشانگر ISSR برای مطالعات تنوع ژنتیکی، رده‌بندی، نشانمندکردن ژن‌ها، نقشه‌یابی ژنتیکی[11] و زیست‌شناسی تکاملی به کار می‌رود [96]. در بین نشانگرهای مولکولی نشانگرهای ISSR به طور گسترده‌ای در نواحی بین ریزماهواره‌ای در سرتاسر ژنوم پراکنده می‌شوند. این روش کاربردهای جالبی در ژنتیک گیاهی به‌ خصوص در بررسی تنوع و ژنتیک جمعیت در گونه‌های گیاهی که اطلاعاتی در مورد توالی آن‌ ها در دسترس نیست، دارد [42،20]. اگرچه بسیاری از توده‌های گندم در ایران جمع‌ آوری شده‌اند، اما ژنتیک گندم وحشی و آژیلوپس در ایران هنوز تا حدود زیادی ناشناخته است [47]. بنابراین در تحقیق حاضر، سعی بر این است که با بررسی تنوع ژنتیکی 16 جمعیت از گونهAe.crassa  با بهره گرفتن از نشانگرهای ISSR، گامی در جهت افزایش فهم ساختار ژرم‌پلاسم این گونه برداشته شود.

1-Gramineae                                                                                                                                         2-Poaceae                               

3-Triticeae

موضوعات: بدون موضوع  لینک ثابت


فرم در حال بارگذاری ...