فهرست جدول ها

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   
جدول 3-1- کلاس و ترکیب سنی میش و تعداد میش برآورد شده در هر کلاس سنی در گوسفندان بومی گیلان… 17
جدول 3-2- کلاس و ترکیب سنی قوچ و تعداد قوچ برآورد شده در هر کلاس سنی در گوسفندان بومی گیلان … 17
جدول 3-3- کلاس و ترکیب سنی میش و تعداد میش در هر کلاس سنی گله پایه 1……………………………………….. 17
جدول 3-4- کلاس و ترکیب سنی قوچ و تعداد قوچ در هر کلاس سنی گله پایه 1………………………………………… 17
جدول 3-5- کلاس و ترکیب سنی میش و تعداد میش در هر کلاس سنی گله پایه 2……………………………………….. 18
جدول 3-6- کلاس و ترکیب سنی قوچ و تعداد قوچ در هر کلاس سنی گله پایه 2………………………………………… 18
جدول 3-7- کلاس و ترکیب سنی میش و تعداد میش در هر کلاس سنی گله پایه 3………………………………………. 18
جدول 3-8- کلاس و ترکیب سنی قوچ و تعداد قوچ در هر کلاس سنی گله پایه 3………………………………………… 18
جدول 3-9- کلاس و ترکیب سنی میش و تعداد میش در هر کلاس سنی گله پایه 4……………………………………….. 19
جدول 3-10- کلاس و ترکیب سنی قوچ و تعداد قوچ در هر کلاس سنی گله پایه 4………………………………………. 19
جدول 3-11- کلاس و ترکیب سنی میش وتعداد میش در هر کلاس سنی گله پایه 5………………………………………. 19
جدول 3-12- کلاس و ترکیب سنی قوچ و تعداد قوچ در هر کلاس سنی گله پایه 5………………………………………. 19
جدول 3-13- توارث پذیری و واریانس ژنتیكی افزایشی صفت وزن از شیرگیری در گوسفندان بومی گیلانی…….. 20
جدول 3-14-توارث پذیری و واریانس ژنتیكی افزایشی صفت وزن ازشیرگیری در گوسفندان بومی گیلانی……….. 20
جدول4-1- رشد ژنتیکی در انتخاب تک مرحله‌ای به ازای مقادیرمختلف نرخ انتقال ماده از پایه به هسته (X) و نرخ انتقال نر از هسته به پایه (W) به همراه نسبت انتخاب میش‌های پایه برای انتقال به هسته ( BFN) با درنظرگرفتن سهم هسته 10 درصد از کل جمعیّت و با وراثت‌پذیری 0.3050 …………………………………………………. 23
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



جدول4-2- رشد ژنتیکی درانتخاب تک مرحله‌ای به ازای مقادیر مختلف نرخ انتقال ماده از پایه به هسته (X) و نرخ انتقال نر از هسته به پایه (W) به همراه نسبت انتخاب میش‌های پایه برای انتقال به هسته ( BFN) با درنظرگرفتن سهم هسته 5 درصد از کل جمعیّت و با وراثت‌پذیری 0.3050………………………….. 24
جدول4-3- رشد ژنتیکی در انتخاب تک مرحله‌ای به ازای مقادیر مختلف نرخ انتقال ماده از پایه به هسته (X) و نرخ انتقال نر از هسته به پایه (W) به همراه نسبت انتخاب میش‌های پایه برای انتقال به هسته ( BFN) بادر نظرگرفتن سهم هسته 15 درصد از کل جمعیّت و با وراثت‌پذیری 0.3050………………………… 25
جدول4-4- رشد ژنتیکی در انتخاب تک مرحله‌ای به ازای مقادیر مختلف نرخ انتقال ماده ازپایه به هسته (X) و نرخ انتقال نر از هسته به پایه (W) به همراه نسبت انتخاب میش‌های پایه برای انتقال به هسته ( BFN) با درنظرگرفتن سهم هسته 10 درصد از کل جمعیّت و با وراثت‌پذیری 0.2745 ………………………. 27
جدول 4-5- رشد ژنتیکی در انتخاب تک مرحله‌ای به ازای مقادیرمختلف نرخ انتقال ماده ازپایه به هسته (X) و نرخ انتقال نر از هسته به پایه (W) به همراه نسبت انتخاب میش‌های پایه برای انتقال به هسته ( BFN) با درنظرگرفتن سهم هسته 5 درصد از کل جمعیّت و با وراثت‌پذیری0.2745 ………………………….. 28
جدول4-6- رشد ژنتیکی در انتخاب تک مرحله‌ای به ازای مقادیرمختلف نرخ انتقال ماده ازپایه به هسته (X) و نرخ انتقال نر از هسته به پایه (W) به همراه نسبت انتخاب میش‌های پایه برای انتقال به هسته ( BFN) با درنظرگرفتن سهم هسته 15 درصد از کل جمعیت و باوراثت‌پذیری0.2745 …………………………. 29
جدول4-7- رشد ژنتیکی در انتخاب تک مرحله‌ای به ازای مقادیر مختلف نرخ انتقال ماده ازپایه به هسته (X) و نرخ انتقال نر از هسته به پایه (W) به همراه نسبت انتخاب میش‌های پایه برای انتقال به هسته ( BFN) با درنظرگرفتن سهم هسته 10 درصد از کل جمعیّت و با وراثت‌پذیری0.3355 ……………………….. 31
جدول 4-8- رشد ژنتیکی در انتخاب تک مرحله‌ای به ازای مقادیرمختلف نرخ انتقال ماده ازپایه به هسته (X) و نرخ انتقال نر از هسته به پایه (W) به همراه نسبت انتخاب میش‌های پایه برای انتقال به هسته ( BFN) با درنظرگرفتن سهم هسته 5 درصد از کل جمعیّت و باوراثت‌پذیری 0.3355 …………………………. 32
جدول 4-9- رشد ژنتیکی در انتخاب تک مرحله‌ای به ازای مقادیر مختلف نرخ انتقال ماده از پایه به هسته (X) و نرخ انتقال نر از هسته به پایه (W) به همراه نسبت انتخاب میش‌های پایه برای انتقال به هسته ( BFN) با درنظرگرفتن سهم هسته 15 درصد از کل جمعیّت و با وراثت‌پذیری 0.3355 …………………….. 33
جدول4-10- حداکثر رشد ژنتیکی در انتخاب دو مرحله‌ای به ازای مقادیر مختلف نرخ انتقال ماده از پایه به هسته (X) و نرخ انتقال نر از هسته به پایه (W) به همراه مقدار بهینه نسبت انتخاب مرحله ی اول(q1) با درنظرگرفتن سهم هسته 10 درصد از کل جمعیّت و با وراثت‌پذیری 0.3050…………………………………….. 35
جدول4-11- حداکثر رشد ژنتیکی در انتخاب دو مرحله‌ای به ازای مقادیر مختلف نرخ انتقال ماده از پایه به هسته (X) و نرخ انتقال نر از هسته به پایه (W) به همراه مقدار بهینه نسبت انتخاب مرحله ی اول( q 1) با درنظرگرفتن سهم هسته 5 درصد از کل جمعیّت و با وراثت‌پذیری0.3050…………………………………. 36


 

جدول 4-12- حداکثر رشد ژنتیکی در انتخاب دو مرحله‌ای به ازای مقادیر مختلف نرخ انتقال ماده از پایه به هسته (X) و نرخ انتقال نر از هسته به پایه (W) به همراه مقدار بهینه نسبت انتخاب مرحله‌ی اول( q 1) با درنظرگرفتن سهم هسته 15 درصد از کل جمعیّت و با وراثت‌پذیری .3050……………………………………

38
جدول 4-13- حداکثر رشد ژنتیکی در انتخاب دو مرحله‌ای به ازای مقادیر مختلف نرخ انتقال ماده از پایه به هسته (X) و نرخ انتقال نر از هسته به پایه
مقالات و پایان نامه ارشد
(W) به همراه مقدار بهینه نسبت انتخاب مرحله ی اول ( q 1) با درنظرگرفتن سهم هسته 10 درصد از کل جمعیّت  و با وراثت‌پذیری 0.2745 …………………………….
40
جدول 4-14- حداکثر رشد ژنتیکی در انتخاب دو مرحله‌ای به ازای مقادیر مختلف نرخ انتقال ماده از پایه به هسته (X) و نرخ انتقال نر از هسته به پایه (W) به همراه مقدار بهینه نسبت انتخاب مرحله‌ی اول (q 1) با درنظرگرفتن سهم هسته 5 درصد از کل جمعیّت و با وراثت‌پذیری 0.2745 ……………………………………… 41
جدول 4-15- حداکثر رشد ژنتیکی در انتخاب دو مرحله‌ای به ازای مقادیر مختلف نرخ انتقال ماده از پایه به هسته (X) و نرخ انتقال نر از هسته به پایه (W) به همراه مقدار بهینه نسبت انتخاب مرحله ی اول( q 1) با درنظرگرفتن سهم هسته 15 درصد از کل جمعیّت و با وراثت‌پذیری 0.2745 …………………………….. 43
جدول 4-16- حداکثر رشد ژنتیکی در انتخاب دو مرحله‌ای به ازای مقادیر مختلف نرخ انتقال ماده از پایه به هسته (X) و نرخ انتقال نر از هسته به پایه (W) به همراه مقدار بهینه نسبت انتخاب مرحله‌ی اول(q 1) با درنظرگرفتن سهم هسته 10 درصد از کل جمعیّت و با وراثت‌پذیری 0.3355 …………………………………… 45
جدول 4-17- حداکثر رشد ژنتیکی در انتخاب دو مرحله‌ای به ازای مقادیر مختلف نرخ انتقال ماده از پایه به هسته (X) و نرخ انتقال نر از هسته به پایه (W) به همراه مقدار بهینه نسبت انتخاب مرحله‌ی  اول(q 1) با درنظرگرفتن سهم هسته 5 درصد از کل جمعیّت و با وراثت‌پذیری 0.3355 …………………………………….. 46
جدول 4-18- حداکثر رشد ژنتیکی در انتخاب دو مرحله‌ای به ازای مقادیر مختلف نرخ انتقال ماده از پایه به هسته (X) و نرخ انتقال نر از هسته به پایه (W) به همراه مقدار بهینه نسبت انتخاب مرحله‌ی اول(q 1) با درنظرگرفتن سهم هسته 15 درصد از کل جمعیّت و با وراثت‌پذیری 0.3355 ………………………………….. 48

 فهرست شکل ها

 

 

   
شکل 1- 1- نمایی از سطح گلّه گوسفند بومی گیلان در ارتفاعات شهرستان ماسال……………………………………….. 13

چکیده

شبیه سازی رایانه‌ای رشد ژنتیکی صفت وزن از شیر­گیری ناشی از انتخاب تک مرحله‌ای و دو مرحله‌ای در طرح اصلاح نژادی هسته­ی باز در گوسفندان گیلان

به منظور محاسبه رشد ژنتیکی صفت وزن از شیر­گیری، مقایسه حالات مختلف از نظر رشد ژنتیکی در انتخاب تک مرحله‌ای و دو مرحله‌ای و همچنین تعیین بهترین ساختار و نرخ انتقال بهینه در جمعیّت گوسفندان بومی گیلان از یک مدل قطعی شبیه سازی رایانه‌ای استفاده شد. داده‌ها شامل اطّلاعات جمع آوری شده از سازمان جهاد کشاورزی استان گیلان تا سال 1392 و همچنین بازدید میدانی از سطح گلّه بود. شبیه سازی سیستم اصلاح نژادی با بهره گرفتن از نرم افزار انجام شد. صفت وزن از شیرگیری، تابع هدف را در این تحقیق، تشكیل می داد. زمانی که هسته بسته بود اساساً هیچ حیوانی از پایه به هسته منتقل نمی‌شد و در همه حالات رشد ژنتیکی نسبت به هسته باز کمتر بود. میزان رشد ژنتیکی در هسته بسته در انتخاب تک مرحله‌ای و دو مرحله‌ای برابر بود. در طرح هسته باز با انتخاب تک مرحله‌ای و دو مرحله‌ای با زیاد شدن سهم هسته از کل جمعیّت زمانی که وراثت‌پذیری کم یا متوسط بود (یعنی برابر 0.2745 یا 0.3050)، رشد ژنتیکی افزایش یافت و هنگامی که وراثت‌پذیری بالا بود (0.3355)، وقتی سهم هسته از کل جمعیّت برابر 10 درصد بود بیشترین رشد ژنتیکی حاصل شد كه در انتخاب تک مرحله‌ای 0.2570 کیلوگرم و در انتخاب دو مرحله‌ای 0.2572 کیلوگرم بود. انتخاب دو مرحله‌ای بر انتخاب تک مرحله‌ای ارجحیت داشت. در همه حالات مورد بررسی با تغییر سهم هسته و میزان وراثت‌پذیری مقادیر بهینه نرخ انتقال نر­ها و ماده­ها تغییر كرد اما نوع انتخاب بر ساختار بهینه طرح بی­تأثیر بود. بطور کلّی برای جمعیّت گوسفندان بومی گیلان، استفاده از طرح هسته باز با انتخاب دو مرحله‌ای با تأمین 50 درصد ماده‌های هسته از پایه و 50 درصد نرهای پایه از هسته به بالاترین رشد ژنتیکی سالانه در تابع هدف منجر شد

مقدمه

در راهبرد انتخاب درون نژادی، یکی از روش‌ها استفاده از هسته‌های اصلاح نژادی است (جیمز[1]، 1977). پیشرفت ژنتیکی در گلّه‌­های اصلاح نژادی دارای هسته، یک شروع مناسب برای برنامه­‌های اصلاح نژادی است. بدلیل دقّت در اندازه‌گیری‌های صفات اقتصادی و مدیریت جفت گیری‌­ها، مسئله همخونی نیز راحت­تر کنترل می‌شود.

طرح اصلاح نژادی هسته مبتنی بر ایجاد پیشرفت ژنتیکی در بخشی از جمعیّت یک توده نژادی بنام هسته و انتقال آن به سایر افراد یک جمعیّت است که در قالب گله‌­های متعدّد بنام پایه بسر می‌برند. روش اصلاح نژادی هسته‌ای دارای مزایای زیر است ( مولر و جیمز[2]، 1984):

1- کاهش هزینه­‌های رکورد گیری در سطح ملّی و استانی.

  • تمرکز بر روی یک واحد کوچکتری بنام هسته تا برتری ژنتیکی ایجاد شده در آن، بتدریج به کل جمعیّت همان توده نژادی منتقل گردد.
  • کنترل پرورش و ثبت عملکرد و همچنین سرعت بخشیدن تجدید نسل در حیوانات.
  • اندازه ­گیری صفاتی که در مزرعه امکان آن وجود ندارد.

با وجود فراوانی تعداد و تنوّع توده‌های نژادی گوسفند در کشورهای در حال توسعه و نگهداری آنها در دامداری‌های روستایی، اطّلاعات اندکی در زمینه برنامه‌های بهبود ژنتیکی این حیوانات در دست می‌باشد (كاسگی و اوكیو[3]، 2007). یکی از روش‌های عمده برای پیشرفت ژنتیکی پایدار در نشخوارکنندگان کوچک مثل گوسفند و بز، انتخاب درون نژادی است. هسته اصلاح نژادی می‌تواند بصورت باز یا بسته تعریف گردد. در یک هسته نژادی بسته هیچ جریان ژنی بین لایه پایه و لایه هسته وجود ندارد و تمام عملیّات ثبت رکورد، محدود به همان جمعیّت است.

ایران با دارا بودن بیش از 50 میلیون رأس گوسفند در قالب توده‌های نژادی مختلف، رتبه چهارم دنیا را دارد (مرکز اصلاح نژاد کشور). در طی سه دهه گذشته 10 ایستگاه پرورش و اصلاح نژاد گوسفند در سطح کشور احداث شده است. از اهداف اصلی این ایستگاه‌ها، شناسایی ظرفیّت تولیدی، حفظ نژاد، بهبود عملکرد صفات تولیدی و انتقال پیشرفت ژنتیکی به گلّه‌های مردمی است (عباسی و همکاران، 1386، وطن خواه و همکاران، 1383).

مطالعات نشان می‌دهد در گلّه‌های این ایستگاه‌ها که بعنوان هسته‌های مرکزی اصلاح نژاد محسوب می‌شوند، هیچ پیشرفت ژنتیکی معنی داری ایجاد نشده است. علّت این امر را می‌توان به مشخص نبودن عوامل زیر نسبت داد (وطن

موضوعات: بدون موضوع  لینک ثابت


فرم در حال بارگذاری ...