1-3- توابع پتانسیل……………………………………………….. 19
1-4- جواب کلی معادلات حرکت…………………………………..26
فصل دوم: حالات خاص و توابع گرین در حالت کلی……………..33
2-1- مقدمه………………………………………………………… 34
2-2- نیروی متمرکز در جهت  دلخواه…………………………….. 34
2-3- نتایج برای محیط ایزوتروپ……………………………………35
2-4- نتایج برای حالت استاتیکی……………………………….. 37
2-5-تبدیل دستگاه مختصات قطبی به دستگاه ‌مختصات دکارتی و انتقال محورها…41
فصل سوم: تابع امپدانس شالوده صلب مستطیلی با بهره گرفتن از توابع گرین…….46
3-1- مقدمه………………………………………………………… 47
3-2- تحلیل شالوده صلب مستطیلی تحت تغییرمکان همزمان افقی و گهواره ای….47
3-3-1- توابع شکل مورد استفاده……………………………….. 48
3-3-1-1- توابع شکل المان‌های لبه‌ای 8 گره‌ای ()……………. 49
3-3-1-2- توابع شکل المان‌های میانی 8 گره‌ای ()…………… 52
3-3-1-3- توابع شکل المان‌های گوشه 8 گره‌ای () …………….52
3-4- فلوچارت برنامه‌نویسی برای تحلیل مسأله ……………….56
فصل چهارم: نتایج عددی………………………………………… 58
4-1- مقدمه……………………………………………………….. 59
فصل پنجم: نتیجه ­گیری و پیشنهادات…………………………. 84
5-1- مقدمه……………………………………………………….. 85
5-2- پیشنهادات…………………………………………………. 85
فهرست مراجع……………………………………………………. 86
چکیده:
در این پایان‌نامه توابع امپدانس[1] افقی، گهواره‌ای (خمشی) و توام افقی- گهواره‌ای شالوده‌های مربع مستطیلی مستقر بر سطح محیط خاکی با رفتار ایزوتروپ جانبی و ارتجاعی به‌روش تحلیلی در فضای فركانسی به‌دست می‌آیند به‌طوری که می‌توانند به صورت پارامترهای متمرکز جایگزین خاك زیر شالوده شوند. بدین منظور ابتدا معادلات حاكم بر سیستم مشترک شالوده و خاک زیر آن در دستگاه مختصات استوانه‌ای بیان شده و بر حسب مؤلفه‌های بردار تغییرمكان به‌صورت یک سری معادله دیفرانسیـل درگیر با مشتقات جزئی نوشته می‌شوند. برای مجزاسازی این معادلات از توابع پتانسیلی[2] كه توسط اسكندری قادی در سال 2005 ارائه شده، استفاده می‌شود. معادلات به‌دست آمده با بهره گرفتن از سری فوریه نسبت به ‌مختصه زاویه‌ای و تبدیل هنکل نسبت به ‌مختصه شعاعی در دستگاه مختصات استوانه‌ای برای بار متمرکز حل شده و توابع گرین تغییرمکان و تنش به‌دست می‌آیند. با تبدیل مختصات از دستگاه قطبی به ‌دستگاه دکارتی، نتایج در دستگاه مختصات دکارتی نوشته شده و با بهره گرفتن از انتقال دستگاه مختصات، توابع گرین برای محل اثر دلخواه نیروی متمرکز خارجی تعیین می‌شوند. سپس با بکارگیری اصل جمع آثار قوا (بر هم نهی)، تغییرمکان‌ها و تنش‌ها در محیط ناشی از بارگذاری سطحی با شکل دلخواه به‌صورت انتگرالی به‌دست می‌آیند. در حالت کلی این انتگرال‌ها به‌صورت تحلیلی قابل استحصال نبوده و باید به‌صورت عددی برآورد شوند. برای مدل‌سازی شالوده صلب، لازم است تغییرمکان نقاط مختلف شالوده چنان نوشته شوند که تغییر فاصله نقاط مختلف شالوده را غیر ممکن سازد. به‌منظور اعمال این شرط به ‌شکل عددی، تنش تماسی شالوده و خاک زیر آن به ‌فرمت اجزاء محدود با المان‌های جدید تحت نام المان گرادیانی پویا[3] نوشته شده و با ارضاء شرایط مرزی تغییرمکانی مسئله، توابع تنش، تغییرمکان و سختی افقی و خمشی (گهواره ای) شالوده صلب مستطیلی تعیین می‌شوند. بدین ترتیب تنش تماسی زیر شالوده صلب تعیین شده و از آن اندازه نیروی تماسی و یا گشتاور خمشی برای تغییرمكان افقی و گهواره ای هر یک با دامنه ثابت به‌دست می­آیند. ماتریس تبدیل بردار تغییر مکان- تغییر زاویه به بردار نیروی افقی- گشتاور خمشی را ماتریس توابع امپدانس می­نامیم. این ماتریس با داشتن دو بردار فوق تعیین می­ شود. نشان داده می‌شود كه نتایج به‌دست آمده حاصل از این روش برای محیط ایزوتروپ بر نتایج قبلی ارائه شده توسط لوکو[4] ومیتا[5] وگوییزنا[6] منطبق است. همچنین نتایج برای حالت استاتیكی با حدگیری از نتایج اصلی برای زمانی که فرکانس تحریک به سمت صفر میل می­ کند، به‌دست می‌آیند. در صورتی‌كه فركانس تحریک به ‌سمت صفر میل كند و رفتار محیط به‌طور حدی به‌سمت ایزوتروپ میل كند، نتایج ناشی از تغییر مکان استاتیکی برای محیط ایزوتروپ به‌صورت بسته به‌دست می‌آیند.
فصل اول: معادلات كلی حاکم بر انتشار امواج در محیط‌های ایزوتروپ جانبی و شرایط مرزی مسأله
1-1- مقدمه
به علت اثر گذاری سازه بر خاک و خاک بر سازه تحلیل دینامیکی سازه‌های سنگین مستقر بر سطح زمین (شکل 1-1) نیاز به در نظر گرفتن اندرکنش خاک و سازه دارد، چه در غیر این صورت نتایج تحلیل سازه با دقت کم همراه خواهد بود. در این موارد همواره برای داشتن طرح مطمئن نیاز به ‌ساده‌سازی‌های محافظه کارانه و در نتیجه غیراقتصادی می‌باشد. یکی از راه‌های در نظر گرفتن اندرکنش خاک و سازه، تحلیل مجموعه سازه و خاک با بهره گرفتن از روش اجزا محدود و در نتیجه با المان‌بندی زمین زیر ساختمان (شکل 1-2) می‌باشد. تحلیل سازه به‌همراه زمین مطابق این روش اولاً بسیار پرهزینه بوده و ثانیاً به‌علت عدم توانایی المان‌بندی زمین تا بی‌نهایت از دقت مناسب برخوردار نیست. به‌علاوه از آنجایی که سختی المان‌های خاک با ابعاد مختلف متفاوت می‌باشد، آنالیز انتشار امواج به ‌این روش، امواج انعکاسی و انکساری غیر واقعی در اختیار قرار می‌دهد که به‌نوبه ‌خود دقت محاسبات را کاهش می‌دهد. به‌همین علت با ارزش خواهد بود که توابع امپدانس شالوده‌ها به‌روش تحلیلی به‌دست آیند و جایگزین خاک زیر شالوده گردند (شکل 1-3). تعیین این توابع امپدانس نیاز به ‌تحلیل محیط نیم بی‌نهایت تحت بارگذاری دلخواه در محل استقرار شالوده دارد. از طرفی رفتار خاک زیر شالوده به‌علت پیش‌تحکیمی در طول زمان ایزوتروپ نبوده، بلکه بیشتر شبیه رفتار ایزوتروپ جانبی می‌باشد. در نتیجه به‌منظور واقعی‌تر کردن تحلیل فوق‌الذکر، در این پایان‌نامه محیط ایزوتروپ جانبی به‌عنوان محیط مبنا در نظر گرفته شده و تحت اثر ارتعاش توام افقی و گهواره ای یک شالوده

مقالات و پایان نامه ارشد

 سطحی صلب مربع مستطیل در فضای فرکانسی مورد تحلیل قرار می‌گیرد.

انتشار امواج[1] در یک محیط ناشی از بارگذاری خارجی از جمله مباحثی بوده است که در قرن گذشته بسیاری از محققان و مهندسان در زمینه ریاضیات کاربردی و مکانیک مهندسی را به ‌‌خود جلب کرده است. انتشار امواج در یک محیط ارتجاعی به ‌معنی انتقال تغییر شکل از یک نقطه به ‌نقطه دیگر می‌باشد. بر اساس اصول مکانیک محیط‌های پیوسته، تغییرشکل‌ها مولد تنش‌ها می‌باشند. بنابراین به‌همراه انتقال تغییر شکل‌ها، تنش‌ها نیز از یک نقطه به ‌نقطه دیگر منتقل می‌شوند. به‌همین علت گاهی انتشار امواج در محیط ارتجاعی به‌نام انتشار امواج تنشی[2] نیز نامیده می‌شود. مقاله پایه‌ای در زمینه انتشار امواج مربوط به ‌لمب (Lamb) در سال 1904 می‌باشد [1]. او در این مقاله، انتشار امواج ناشی از یک بار هارمونیک وارد بر یک محیط ایزوتروپ و ارتجاعی نیمه بینهایت را در دو حالت دو بعدی و سه بعدی بررسی کرده و میدان تغییرمکان آنها را به‌دست آورده است. در این مقاله نیروی متمرکز بر حسب زمان  به‌صورت تک هارمونیکی در نظر گرفته شده است به‌طوری که  فرکانس تغییرات نیرو بر حسب زمان می‌باشد. به‌علت تغییرات هارمونیکی محرک (نیروی)، پاسخ سیستم شامل میدان‌های تغییرمکان، کرنش و تنش نیز به‌صورت هارمونیکی بر حسب زمان تغییر می‌کنند1، به‌همین علت جمله  از معادلات حرکت در غیاب نیروهای حجمی حذف شده و معادلات حرکت به‌صورت مستقل از زمان و وابسته به‌  نوشته می‌شوند. در این حالت مسأله انتشار امواج در فضای فرکانسی حل می‌شود. به‌علت حذف متغیر زمان، معادلات حرکت به ‌دستگاه معادلات دیفرانسیل با مشتقات جزئی نسبت به ‌مکان تبدیل شده و در صورتی‌كه محیط ایزوتروپ باشد تجزیه هلمهولتز همواره این دستگاه معادلات را به‌ معادلات دیفرانسیل با مشتقات جزئی و مستقل از یکدیگر تبدیل می‌کند. معادلات حاکم بر توابع هلمهولتز، معادلات موج بوده که وابسته به دستگاه مختصات می ­تواند با بهره گرفتن از روش فوریه (جداسازی متغیرها) و تبدیل هنکل3 و یا روش های دیگر حل شوند. لمب با بهره گرفتن از تبدیل انتگرالی هنکل معادلات حرکت را در حالت سه بعدی حل کرده است [1].
یکی از دلایل استفاده از تبدیلات در حل معادلات دیفرانسیل با مشتقات جزیی کاهش متغیرهای مستقل معادله وتبدیل آن به ‌معادله دیفرانسیل معمولی می‌باشد [17]. در حل مسائل مربوط به ‌محیط‌های نا‌متناهی، معمولاً شرایط مرزی به‌صورت توابع قطعه‌ای پیوسته[1] وجود دارند و تبدیلات انتگرالی[2] این شرایط را به‌صورت توابع پیوسته در فضای تبدیل یافته[3] در می‌آورند. این موضوع یکی دیگر از دلایل استفاده از تبدیلات انتگرالی می‌باشد، چه در غیر این صورت شرایط مرزی به‌صورت مختلط و پیچیده در می‌آیند .
بعد از لمب محققان زیادی در زمینه انتشار امواج در محیط‌های ایزوتروپ تحقیق کرده‌اند و تحقیقات گسترده‌ای را ارائه کرده‌اند که از آن جمله می‌توان اشخاص زیر را برشمرد:

انتشار امواج در محیط‌های ناهمسان[4] در گذشته كمتر مورد توجه قرار گرفته است. در حال حاضر با توجه به ‌استفاده روز افزون از مواد ناهمسان نیاز به ‌تحقیقات در زمینه انتشار امواج در این محیط‌ها بیشتر احساس می‌شود. برای مثال مواد کامپوزیت که در سال‌های اخیر در زمینه علوم مهندسی کاربرد گسترده‌ای یافته‌اند دارای خاصیت نا‌همسانی می‌باشند. از سوی دیگر در زمین‌هایی که خاک تحت اثر نیروی ثقل رسوب کرده است و نهشته‌های طبیعی سربار شده روی هم تشکیل داده است، خاصیت ناهمـسانی وجود دارد.
اما با توجه به ‌ملاحظات کاربردی در زمینه مهندسی محیط‌های ناهمسان معمولاً به‌صورت ایزوتروپ جانبی[5] و یا ارتوتروپیك[6] مدل‌سازی می‌شوند. یکی از بررسی‌های اولیه در زمینه انتشار امواج در محیط‌های ایزوتروپ جانبی توسط Stoneley در سال 1949 انجام گرفته است [2]. او نشان داد که وجود مواد با خاصیت ایزوتروپ جانبی می‌تواند منجر به ‌تفاوت‌های قابل توجـهی در زمینه انــتشار امواج نسبت به ‌مواد ایزوتروپ گـردد.
Synge در سال 1957، انتشار امواج ریلی[7] در محیط‌های ایزوتروپ جانبی را بررسی کرده است و نتیجه گرفته که این امواج فقط در صورتی در این محیط‌ها منتشر می‌شوند که محور ایزوتروپی محیط یا عمود بر سطح آزاد و یا موازی این سطح باشد [3]. همچنین او بیان داشته است که امواج ریلی معمولی (در محیط‌های ایزوتروپ) موازی سطح آزاد محیط منتـشر می‌شوند در حالی‌که امواج ریلی کلی (در محیـط‌های نا‌ایزوتروپ) می‌توانند با شیب نسبت به ‌سطح آزاد منتشر شوند [3].
Rajapakse و Wang در سال1991 تغییرمکان‌ها و تنش‌های ناشی از ارتعاش هارمونیک یک جسم صلب در یک محیط ارتوتروپ دو بعدی را به‌دست آورده‌اند [4]. همچنین آنها تغییرمکان‌ها و تنش‌های ناشی از ارتعاش هارمونیک نیروی موثر بر پیرامون یک دایره مدفون در یک محیط ایزوتروپ جانبی را در حالت سه بعدی تعیین کرده‌اند [5]. در این مقاله، آنها دستگاه معادلات حرکت را با بهره گرفتن از سه تابع پتانسیل به ‌دو معادله درگیر[8] و یک معادله مستقل تبدیل کرده و بدون اثبات كامل بودن توابع پتانسیل اختیار شده معادلات به‌دست آمده را با بهره گرفتن از تبدیلات انتگرالی حل کرده‌اند.
رحیمیان و همكاران [16] مسأله لمب را برای محیط ایزوتروپ جانبی پیگیری كرده و معادلات حركت را با بهره گرفتن از توابع پتانسیل اسكندری قادی [7] به‌صورت مستقل در‌آوردند. معادلات به‌دست آمده از توابع پتانسیل را به ‌كمك سری فوریه در امتداد زاویه‌ای و تبدیل هنكل در امتداد شعاعی در یک دستگاه مختصات استوانه‌ای حل كردند. اسكندری قادی و همكاران [8] نیز یک نیم‌فضای ایزوتروپ جانبی متشكل از یک لایه فوقانی و یک محیط نیمه بی‌نهایت تحتانی با رفتار ایزوتروپ جانبی تحت اثر نیروهای سطحی هارمونیكی را تجزیه وتحلیل كرده و با بهره گرفتن از توابع پتانسیل ارائه شده توسط اسكندری قادی حل كرده­اند.
تعیین توابع امپدانس مربوط به شالوده های مستقر بر محیط نیم بینهایت از مسائلی است كه مورد توجه مهندسین ساختمان و محققین ریاضی كاربردی بوده است. اسكندری قادی و همكاران در سال های 2010، 2011 و 2012 توابع امپدانس قائم و خمشی شالوده دایره­ای صلب مستقر بر محیط ایزوتروپ جانبی به روش تحلیلی و با حل معادلات انتگرالی دوگانه حل كرده­اند. همچنین اسكندری قادی و همكاران توابع امپدانس افقی و خمشی را برای شالوده صلب مستطیلی مستقر بر محیط ایزوتروپ جانبی را با فرض شرایط مرزی مستقل و به كمك تركیب روش های تحلیلی و عددی به­دست آورده­اند.
 در این پایان‌نامه در ابتدا معادلات حاكم شامل معادلات تعادل، روابط تنش-كرنش یا معادلات رفتاری و روابط كرنش-تغییرمكان در سیستم مختصات استوانه‌ای بیان شده و در ادامه معادلات حرکت بر حسب مولفه‌های بردار تغییرمکان به‌دست می‌آیند. این معادلات یک دسته معادلات دیفرانسیل درگیر با مشتقات جزئی می‌باشند كه برای مجزا‌سازی آنها از توابع پتانسیل ارائه شده توسط اسكندری قادی در سال 2005 استفاده می‌شود. در ادامه به ‌كمك سری فوریه و تبدیل هنکل توابع پتانسیل در فضای تبدیل یافته به‌دست می‌آیند.
با بهره گرفتن از روابط تغییرمکان-توابع پتانسیل، تغییرمکان‌ها و تنش‌ها در فضای تبدیل‌یافته به‌دست می‌آیند. استفاده از سری فوریه و قضیه تبدیل معکوس، این توابع را در فضای واقعی به‌صورت انتگرالی در اختیار قرار می‌دهد. این نتایج برای نیروی متمرکز  با امتداد دلخواه موثر بر محل دلخواه در سطح نوشته می‌شوند تا توابع گرین تغییرمکان و تنش به‌دست آیند. با بهره گرفتن از توابع گرین به‌دست آمده و نیز استفاده از اصل جمع آثار قوا، تغییرمکان‌های هر نقطه ناشی از نیروی سطحی موثر بر هر سطح دلخواه از جمله سطح مستطیلی به‌دست می‌آیند. مجموعه تغییر مكان های افقی صلب و قائم ناشی از دوران صفحه صلب هر نقطه از صفحه بر حسب تغییر مكان افقی مركز سطح صفحه، ، و دوران كل صفحه حول محور افقی گذرنده از مركز سطح، ، به عنوان شرایط مرزی نوشته می­شوند. تنش ها نیز در سطح نیم فضا و در خارج از محل صفحه مستطیلی به عنوان شرایط مرزی معلوم می­باشند.شرایط در دوردست نیز شرایط مرزی باقیمانده این مساله می­باشند. با توجه به اینكه از تبدیل انتگرالی برای حل معادله دیفرانسیل حاكم بر توابع پتانسیل استفاده شده است، شرایط مرزی در سطح نیم فضا به صورت یک جفت معادله انتگرالی دوگانه كه درگیر می­باشند در می­آیند. از آنجایی كه هندسه مربوط به شالوده پیچیده بوده و با یک سطح مختصات تعریف نمی­ شود، حل تحلیلی معادلات انتگرالی دوگانه بسیار پیچیده می­باشد. لذا با بكارگیری روش اجزا محدود در محدوده تماس شالوده و نیم فضا، مجموعه معادلات انتگرالی فوق به صورت دستگاه معادلات جبری نوشته شده و توابع مجهول شامل تنش تماسی افقی و قائم در نقاط گره ای به­دست می­آیند. از آنجایی كه شالوده صلب می­باشد، این تنش های تماسی در لبه ها و گوشه­های شالوده رفتار تكین داشته و لذا با بهره گرفتن از توابع شكلی كه قابلیت مدلسازی رفتار تكین را دارند، تنش­های تماسی طوری به­دست می­آیند كه این رفتار را مدلسازی نمایند. پس از تعیین تنش های تماسی می­توان نیروی افقی كل و نیز گشتاور لازم برای تغییر مكان های فوق الذكر را تعیین كرد. به این ترتیب بردار تغییر مكان كل صفحه و نیروهای كل مربوطه در اختیار می­باشد. ماتریس تبدیل بردار تغییر مكان به بردار نیروهای كل (نیروی افقی و گشتاور خمشی) را ماتریس امپدانس می­نامیم. با برقراری ارتباط دو بردار فوق، این ماتریس تعیین می­ شود. این ماتریس شامل 4 درایه ، ،  و  است كه به ترتیب تابع امپدانس افقی، تابع امپدانس خمشی یا گهواره­ای و تابع امپدانس توام افقی- گهواره­ای نام دارند. نشان داده می‌شود كه نتایج به‌دست آمده حاصل از این روش برای محیط ایزوتروپ بر نتایج قبلی ارائه شده توسط Luco و Mita و گوییزینا منطبق است [10]. همچنین در این پایان‌نامه، نتایج برای حالت استاتیكی  با حدگیری از نتایج اصلی، به‌دست می‌آیند. در صورتی‌كه  و رفتار محیط به‌سمت ایزوتروپ میل كند، نتایج استاتیكی برای محیط ایزوتروپ به‌دست می‌آیند. برای نشان دادن اثر میزان ناهمسانی نتایج عددی برای محیط‌های ایزوتروپ جانبی با ناهمسانی متفاوت ارائه شده و اختلاف نتایج مورد بحث قرار می‌گیرد.
1 piecewise continuous  function
2 Integral transforms
3 Transformed domain
1 Anisotropic
2 Transversely isotropic
3 Orthotropic
4 Rayleigh waves

موضوعات: بدون موضوع  لینک ثابت


فرم در حال بارگذاری ...