1-2 الکترود………………………………………………………. 4
1-2-1 الکترودهای کربن……………………………………….. 4
1-2-1-1 الکترود کربن شیشه ­ای…………………………….. 5
1-2-1-2 الکترودهای فیبرکربنی………………………………. 6
1-2-1-3 الکترودهای خمیرکربن………………………………. 6
1-2-2 فعال­سازی سطح الکترود و انواع آن…………………… 7
1-2-2-1 پولیش دادن………………………………………….. 7
1-2-2-2 فعال­سازی حرارتی…………………………………… 7
1-2-2-3 فعال­سازی لیزری…………………………………….. 8
1-2-2-4 فعال­سازی با امواج صوتی– رادیویی……………….. 7
1-2-2-5 فعال­سازی با حلال…………………………………… 8
1-3 الکترودهای اصلاح­شده…………………………………… 8
1-3-1الكترودهای اصلاح­شده شیمیایی(CME) ……………..8
1-3-2 تهیه الکترودهای اصلاح شده…………………………. 10
1-3-3 انواع روش­های شیمیایی اصلاح سطح الکترودها ……10
1-3-3-1اصلاح الکترود توسط ترکیبات نانوساختار …………..10
1-3-3-2 اصلاح الکترودها توسط تک لایه­ های خود انباشته…10
1-3-3-3 اصلاح سطح الکترودها توسط روش سل- ژل……… 12
1-3-3-4 اصلاح الکترودها توسط مواد پلیمری……………….. 12
1-4 فناوری نانو…………………………………………………. 14
1-5 نانوساختارها………………………………………………. 14
1-5-1 نانوذرات………………………………………………….. 14
1-5-2 عملکرد نانوذرات در الکتروشیمی…………………….. 15
1-5-2-1 تثبیت زیستمولکول ها در سطح الکترود………….. 16
1-5-2-2 کاتالیز واکنش­های الکتروشیمیایی…………………. 16
1-5-2-3 تسریع انتقال الکترون……………………………….. 16
1-5-2-4 نشانه‌گذاری زیست­مولکول­ها …………………………16
1-5-2-5 نانوذرات به عنوان واکنش­گر عمل می­ کنند…………. 16
1-5-3 سیستم دوفلزی-آلیاژی نانوذرات……………………. 18
1-6 حسگرها………………………………………………….. 19
1-6-1 حسگرهای الکتروشیمیایی………………………….. 20
1-6-2 خصوصیات حسگرها …………………………………..21
1-7 گرافن………………………………………………………. 21
1-7-1 گرافن تقویت شده ……………………………………..23
1-8 پلاتین……………………………………………………… 23
1-8-1الکتروکاتالیست آلیاژی پلاتین…………………………. 24
1-9 پیل سوختی………………………………………………. 25
1-9-1 مزایای پیل سوختی…………………………………… 27
1-9-2 انواع پیل های سوختی……………………………….. 27
1-9-3 غشاهای تبادل پروتون بری کاربرد در پیل سوختی…..29
1-10 اهداف پروژه حاضر……………………………………….. 31
فصل دوم: مواد و تجهیزات مورد استفاده، سنتز و شناسایی نانوکامپوزیت­ها و جزئیات روش­ها وآزمایش­های انجام شده
2-1 مواد شیمیایی مورد استفاده……………………………. 33
2-2- دستگاه­های مورد استفاده……………………………… 34
2-3- سنتز Pt/N-Gr…………………………………………….
2-4- روش تهیه الکترودهای کربن شیشه ­ای اصلاح­شده با گرافن دوپه­شده با نیتروژن و پلاتین (Pt/N-Gr)…36
2-4-1- آماده سازی الکترود…………………………………… 36
2-4-2- اصلاح الکترود GC با گرافن……………………………. 36
2-5- سنتزنانوذرات دوتایی Pt-Fe……………………………..
2-5-1 اصلاح الکترود GC بانانوذرات Pt-Fe…………………….
فصل سوم: بحث و نتیجه گیری
3-1 بررسی رفتار الكتروشیمیایی هیدرازین روی الکترود کربن شیشه­ا­ی اصلاح­شده با گرافن دوپه­شده با نیتروژن و پلاتین….40

مقالات و پایان نامه ارشد

 

3-1-1-مقدمه………………………………………………….. 40
 3-1-2 بهبود پاسخ الکترود کربن شیشه ­ای توسط اصلاح با نانو کامپوزیت Pt/N-Gr…….
3-1-3 بررسی اثر غلظت هیدرازین در رفتار الکتروکاتالیزوری الکترود اصلاح­شده با نانوکامپوزیت Pt/N-Gr……..
3-1-4  محاسبه حدتشخیص، حساسیت، و محدوده خطی الکترد اصلاح­شده با بهره گرفتن ازروش آمپرومتری….43
3-1-5 بررسی میزان پایداری پاسخ الکتروکاتالیزوری الکترود GC-Pt/N-Gr برای اکسیداسیون هیدرازین…….46
3-1-6 بررسی اثر سرعت روبش پتانسیل………………. 47
3-1-7 بررسی انتخاب­پذیری الکترود اصلاح­شده………….. 48
3-1-8 کاربرد تجزیه­ای الکترود………………………………. 49
3-1-9 نتیجه ­گیری…………………………………………… 52
 بخش دوم: طراحی پیل زیست سوختی گلوکز/اکسیژن…53
3-2-1 اکسیداسیون الکتروشیمیایی گلوکز با بهره گرفتن از الکترود کربن شیشه ­ای اصلاح­شده با نانوذراتFe-Pt
3-2-2 به کارگیری نانوکامپوزیت Pt/N-Gr برای احیای اکسیژن….53
3-2-3 به کارگیری الکترود کربن شیشه ­ای اصلاح­شده با نانوذرات Fe-Pt به عنوان آند پیل زیستی سوختی…54
3-2-3-1 بهبود پاسخ الکترود کربن شیشه ­ای اصلاح با نانو ذرات  Fe-Pt نسبت به الکترود کربن شیشه ­ای اصلاح­شده با کربن-پلاتین تجاری برای اکسیداسیون گلوکز…………………54
3-2-3-2 بررسی اثر غلظت گلوکز در رفتار الکتروکاتالیزوری الکترود اصلاح­شده با نانو ذراتFe-P……
3-2-3-3 محاسبه سطح فعال آند (الکترود کربن شیشه ­ای اصلاح­شده با نانوذرات Fe-Pt)….56
3-2-3-4 بررسی پایداری الکترود اصلاح­شده با نانوذرات Fe-Pt…….
3-2-3-5 بررسی اثر مزاحمت اکسیژن برای اندازه­ گیری گلوکز در آند……58
3-2-4 به­ کارگیری الکترود کربن شیشه ­ای اصلاح­شده با/N-Gr  Pt به عنوان کاتد پیل  زیست­ سوختی…..58
3-2-4-1 بهبود پاسخ الکترود کربن شیشه ­ای اصلاح­شده با نانو کامپوزیت  Pt/N-Gr نسبت به الکترود کربن شیشه ­ای اصلاح­شده با کربن-پلاتین تجاری برای احیای اکسیژن………58
3-2-4-2 محاسبه سطح فعال کاتد (الکترود کربن شیشه ­ای اصلاح­شده با Pt/N-Gr)…..60
3-2-4-3 بررسی مکانیسم احیای الکتروکاتالیزوری اکسیژن به روش ولتامتری هیدرودینامیک….61
3-2-4-4 بررسی پایداری الکترود اصلاح­شده با Pt/N-Gr………….
3-2-5کاربرد آند و کاتد طراحی شده جهت ساخت پیل زیست­سوختی گلوکز/ اکسیژن…..63
3-2-5-2 آماده سازی غشای نافیونی……………………….. 64
3-2-5-3 نتایج حاصل از بستن پیل گلوکز/ اکسیژن……….. 64
3-2-5-4 نتیجه­ گیری……………………………………………67
چکیده:
از میان روش­های متنوعی که برای تعیین کمی آنالیت­ها توسعه داده شده ­اند روش­های الکتروشیمیایی به دلیل سادگی و حساسیت بالا دارای کاربردهای بسیار زیادی هستند اما اغلب واکنش اکسیداسیون و احیای مستقیم آنالیت در سطح الکترود معمولی، برگشت­ناپذیر بوده و نیاز به اضافه ولتاژ بالایی دارند. نانومواد به عنوان گزینه­ های بسیار عالی برای اصلاح الکترودها معرفی شده ­اند، بنابراین در این کار نانوکامپوزیت­های جدیدی ساخته شد و از آن­ها برای ساخت حسگرهای الکتروشیمیایی استفاده شد.
در قسمت اول کار برای اولین بار الکترود اصلاح­شده با نانو کامپوزیت Pt/N-Gr به طور موفقیت آمیز برای اندازه ­گیری هیدرازین در پتانسیل­های کاهش یافته بکار گرفته شد. الکترود کربن شیشه ­ای اصلاح­شده با    Pt/N-Gr فعالیت الکتروکاتالیزوری بسیار خوبی نسبت به اکسیداسیون هیدرازین در اضافه پتانسیل کاهش یافته نشان می­دهد(4/0- ولت نسبت به الکترود مرجع Ag/AgCl در محلول بافر فسفات با pH 9 ).  فعالیت الکتروکاتالیزی الکترود اصلاح­شده در برابر هیدرازین به وسیله ولتامتری چرخه­ای ارزیابی شد. برای دستیابی به بهترین پارامترهای کاتالیتیکی مانند حد تشخیص و گستره دینامیک خطی تکنیک آمپرومتری هیدرودینامیک مورد استفاده قرار گرفت و گستره­ی دینامیکی 1/0 تا 555 میکرومولار با حدتشخیص 66 نانومولار و حساسیت694/0 برای هیدرازین در الکترود اصلاح­شده با نانوکامپوزیت Pt/N-Gr به­دست آمد. سپس، انتخاب­پذیری الکترود اصلاح­شده، در حضور گونه­ های خارجی مختلف موجود در محلول آنالیت، آزمایش شد. نتایجِ حاصل، نشان دهنده انتخاب­پذیری قابل قبول برای این الکترود می­باشد. در ضمن از آن­جا که هیدرازین یکی از سوخت­های بکار رفته در طراحی پیل­های سوختی است، این الکترود می ­تواند به عنوان آند در پیل­های سوختی بکار گرفته شود. در نهایت، کاربرد موفقیت­آمیز الکترود در نمونه حقیقی (آب بویلر) مورد بررسی قرار گرفت و صحت قابل قبولی به­دست آمد.
در قسمت دوم این پروژه، از الکتروکاتالیست نانوذرات آلیاژی Fe-Pt استفاده شد که قابلیت کاتالیزوری آن برای اکسیداسیون گلوکز در محلول بافر فسفات با 7=pH بسیار زیاد است و به طور قابل توجهی شدت جریان اکسیداسیون را افزایش داد.
الکترود کربن شیشه ­ای اصلاح­شده باPt/N-Gr  فعالیت الکتروکاتالیزوری خوبی برای احیای اکسیژن نشان داد. بنابراین پیل زیستی گلوکز/اکسیژن را با بکارگیری الکترود کربن شیشه ­ای اصلاح­شده با نانوکامپوزیت  Pt/N-Gr  به عنوان کاتد و الکترود کربن شیشه ­ای اصلاح­شده با نانوذرات آلیاژی  Fe-Pt به عنوان آند طراحی شد.
پتانسیل پیل فوق mV700 ، دانسیته جریان mA.cm-2 31/0و توان خروجیmW.cm-2  85 به دست آمد.
فصل اول: مقدمه و تئوری
1-1- الکتروشیمی تجزیه
الکتروشیمی تجزیه­ای، شاخه­ای از مجموعه وسیع شیمی تجزیه است که راه­های تجزیه­ای مبتنی بر فرایندهای الکتروشیمیایی را مورد بررسی قرار می­دهد. برگزیدگی واکنش­های الکتروشیمیایی و دقت بالایی که با آن می­توان پارامترهای مرتبط با این واکنش­ها را اندازه گرفت، روش­های الکتروشیمیایی تجزیه را در ردیف حساس­ترین و انتخابی­ترین روش­های تجزیه­ای تشخیص و تعیین مقدار قرار می­دهد.
یکی از ویژگی­های کم­نظیر روش­های الکتروشیمیایی تجزیه­ای، گسترش دامنه کارایی آن­هاست، به طوریکه علاوه بر امکان کاربرد آن­ها به صورت روش­های مستقل، می­توان از آن­ها برای آشکارسازی نتایج بسیاری از پدیده­های فیزیکی و شیمیایی استفاده کرد. در حال حاضر، محدوده الکتروشیمی تجزیه از معدود روش­های کلاسیک نظیر پتانسیومتری، آمپرومتری، پلاروگرافی، هدایت­سنجی و ترسیب الکتریکی فراتر رفته و روش­های جدیدتری که ثمره تلفیق اطلاعات الکتروشیمیایی با تکنولوژی مدرن الکترونیک است، به میان آمده­اند [1]. از نظر تاریخی کار در زمینه ولتامتری با کشف پلاروگرافی توسط شیمیدان اهل چک­اسلواکی، ژروسلاو هیروسکی [1] در اوایل دهه 1920 آغاز شد. وی با انجام ولتامتری تجزیه­ای درسطح الکترود جیوه)پلاروگرافی) در این زمینه جایزه نوبل را دریافت کرد [2].  در سال 1964 طبقه ­بندی جالبی توسط نیکولسن[2] و شاین[3] با بهره گرفتن از نتایج حاصل از ولتامتری چرخه­ای[4] ( (CVو روبش خطی[5] (LSV) روی واکنش­های الکترودی صورت گرفت، به علاوه آن­ها ولتامتری چرخه­ای را شبیه­سازی[6] کردند[3]. در سال1950 ولتامتری به صورت یک روش کاملا پیشرفته به نظر می­آمد. به هر حال دهه­ 1955 تا 1965 شاهد بروز چندین روش اصلاحی اساسی از روش اولیه بود که به کمک آن­ها بر بسیاری از محدودیت­های روش­های اولیه غلبه شد. تقویت­کننده­ های عملیاتی با قیمت کم، ابداع دستگاه­های تجاری نسبتا ارزان را ممکن ساخت، که از این اصلاحات مهم بهره می­گرفتند.
1-1-1- اهمیت و مزایای روش­ های الکتروشیمیایی
روش­های الکتروشیمیایی در مقایسه با روش­های شیمیایی دارای مزیت­های ویژه­ای هستند که در زیر برخی از این مزایا بیان شده است:
1. یک روش الکتروشیمیایی می ­تواند انتخابی باشد، در انجام فرایند الکترولیز با اعمال یک مقدار پتانسیل معین به الکترود مورد نظر می­توان واکنش اکسیداسیون و احیا را تا مرحله­ مورد نظر پیش برد. این در حالی است که در واکنش­های شیمیایی، یافتن یک اکسیدکننده و یا­کاهنده خاصی که دارای نقش انتخابی باشد و بتواند واکنش اکسیداسیون و احیا را تا مرحله­ خاصی پیش ببرد مشکل است. به عنوان مثال با اعمال ﭘﺘﺎﻧﺴﯿﻞ 52/0 =‪ در محیط اسیدی و در سطح الکترود جیوه می­توان نیتروبنزن را به فنیل هیدروکسیل آمین تبدیل کرد.  .
حال آنکه اگر کاهش نیتروبنزن به طریق شیمیایی عملی شود، محصول واکنش آنیلین می­باشد.

  1. محصولات واکنش­های الکتروشیمیایی اغلب خالص­ترند و بنابراین نیاز کمتری به انجام مراحل خالص­سازی دارند.
  2. انتخاب یک محیط مناسب برای انجام الکترولیز خیلی آسان­تر از روش­های شیمیایی است. به دلیل این­که با بهره گرفتن از اکسید کننده­ها و یا کاهنده­ها به عنوان معرف در روش­های شیمیایی مسئله انحلال این مواد در محیط نیز مطرح می­ شود.
  3. از نظر زیست محیطی، واکنش­های الکتروشیمیایی تحت شرایط ملایم نظیر دمای اتاق و فشار اتمسفر با بهره گرفتن از جریان الکتریکی انجام می­شوند.

در مقایسه با روش­های طیف­سنجی، دستگاه­های مورد استفاده در الکتروشیمی ارزان­تر هستند. یک آنالیز طیف­سنجی تنها در مورد ملکول­هایی می ­تواند انجام شود که دارای گروه­های رنگ­ساز باشند، در غیر این صورت باید مراحل زمان­بر و پیچیده مشتق­سازی آنالیت را طی کرد. برخلاف روش­های طیف­سنجی که اغلب در محلول­های همگن انجام می­ شود، واکنش­های الکتروشیمیایی در حد فاصل الکترود-محلول انجام می­شوند. در اغلب روش­های طیف­سنجی نیاز به تهیه محلول­های شفاف و همگن است درحالی که روش­های الکتروشیمیایی در محلول­های کدر نیز قابل اجرا هستند.
روش­های الکتروشیمی تجزیه­ای، تاثیر متقابل شیمی و الکتریسیته، یعنی اندازه ­گیری کمیت­های الکتریکی مانند پتانسیل، جریان، بار و ارتباط آن­ها را با پارامترهای شیمیایی شامل می­شوند. چنین استفاده­ای از اندازه ­گیری­های الکتریکی برای اهداف تجزیه­ای، گستره وسیعی از کاربرد­ها را به وجود می­آورد که بررسی­های زیست­محیطی، کنترل کیفیت صنعتی و تجزیه­های زیست پزشکی را در بر می­گیرد.
در دهه­ های اخیر روش­های الكتروشیمیایی بسیار مورد توجه قرار گرفته است. این روش­ها در شیمی تجزیه كاربرد­های فراوانی دارند از جمله:

موضوعات: بدون موضوع  لینک ثابت


فرم در حال بارگذاری ...